\[ \begin{align}\begin{aligned}\newcommand\blank{~\underline{\hspace{1.2cm}}~}\\% Bold symbols (vectors) \newcommand\bs[1]{\mathbf{#1}}\\% Differential \newcommand\dd[2][]{\mathrm{d}^{#1}{#2}} % use as \dd, \dd{x}, or \dd[2]{x}\\% Poor man's siunitx \newcommand\unit[1]{\mathrm{#1}} \newcommand\num[1]{#1} \newcommand\qty[2]{#1~\unit{#2}}\\\newcommand\per{/} \newcommand\squared{{}^2} \newcommand\cubed{{}^3} % % Scale \newcommand\milli{\unit{m}} \newcommand\centi{\unit{c}} \newcommand\kilo{\unit{k}} \newcommand\mega{\unit{M}} % % Percent \newcommand\percent{\unit{\%}} % % Angle \newcommand\radian{\unit{rad}} \newcommand\degree{\unit{{}^\circ}} % % Time \newcommand\second{\unit{s}} \newcommand\s{\second} \newcommand\minute{\unit{min}} \newcommand\hour{\unit{h}} % % Distance \newcommand\meter{\unit{m}} \newcommand\m{\meter} \newcommand\inch{\unit{in}} \newcommand\foot{\unit{ft}} % % Force \newcommand\newton{\unit{N}} \newcommand\kip{\unit{kip}} % kilopound in "freedom" units - edit made by Sri % % Mass \newcommand\gram{\unit{g}} \newcommand\g{\gram} \newcommand\kilogram{\unit{kg}} \newcommand\kg{\kilogram} \newcommand\grain{\unit{grain}} \newcommand\ounce{\unit{oz}} % % Temperature \newcommand\kelvin{\unit{K}} \newcommand\K{\kelvin} \newcommand\celsius{\unit{{}^\circ C}} \newcommand\C{\celsius} \newcommand\fahrenheit{\unit{{}^\circ F}} \newcommand\F{\fahrenheit} % % Area \newcommand\sqft{\unit{sq\,\foot}} % square foot % % Volume \newcommand\liter{\unit{L}} \newcommand\gallon{\unit{gal}} % % Frequency \newcommand\hertz{\unit{Hz}} \newcommand\rpm{\unit{rpm}} % % Voltage \newcommand\volt{\unit{V}} \newcommand\V{\volt} \newcommand\millivolt{\milli\volt} \newcommand\mV{\milli\volt} \newcommand\kilovolt{\kilo\volt} \newcommand\kV{\kilo\volt} % % Current \newcommand\ampere{\unit{A}} \newcommand\A{\ampere} \newcommand\milliampereA{\milli\ampere} \newcommand\mA{\milli\ampere} \newcommand\kiloampereA{\kilo\ampere} \newcommand\kA{\kilo\ampere} % % Resistance \newcommand\ohm{\Omega} \newcommand\milliohm{\milli\ohm} \newcommand\kiloohm{\kilo\ohm} % correct SI spelling \newcommand\kilohm{\kilo\ohm} % "American" spelling used in siunitx \newcommand\megaohm{\mega\ohm} % correct SI spelling \newcommand\megohm{\mega\ohm} % "American" spelling used in siunitx % % Inductance \newcommand\henry{\unit{H}} \newcommand\H{\henry} \newcommand\millihenry{\milli\henry} \newcommand\mH{\milli\henry} % % Power \newcommand\watt{\unit{W}} \newcommand\W{\watt} \newcommand\milliwatt{\milli\watt} \newcommand\mW{\milli\watt} \newcommand\kilowatt{\kilo\watt} \newcommand\kW{\kilo\watt} % % Energy \newcommand\joule{\unit{J}} \newcommand\J{\joule} % % Composite units % % Torque \newcommand\ozin{\unit{\ounce}\,\unit{in}} \newcommand\newtonmeter{\unit{\newton\,\meter}} % % Pressure \newcommand\psf{\unit{psf}} % pounds per square foot \newcommand\pcf{\unit{pcf}} % pounds per cubic foot \newcommand\pascal{\unit{Pa}} \newcommand\Pa{\pascal} \newcommand\ksi{\unit{ksi}} % kilopound per square inch \newcommand\bar{\unit{bar}} \end{aligned}\end{align} \]

Feb 17, 2025 | 257 words | 3 min read

7.2.3. Task 3#

Learning Objectives#

Read and interpret a flowchart that contains user-defined functions; Design a program with user-defined functions; Understand the execution sequence for a program with user-defined functions.

Introduction#

As the scripts and programs we write become more complex, we often do not want to put all of our code directly in the main function. Python allows users to easily write their own functions in order to modularize their programs; these are called user-defined functions.

Task Instructions#

Your team is designing an electric vehicle that will be charged by a wind turbine. You want to write a program that gives a rough estimate for how far the vehicle can travel after a given amount of charging time. A flowchart for that program is shown in Fig. 7.1. Find the output of the program given the following initial conditions:

Table 7.6 Cases for M05 team task 3#

\(\rho\) (\({\kilo\gram}/{\meter^3}\))

A (\({\meter^2}\))

\(C_p\)

v (\({\meter}/{\second}\))

t (\(\text{hour}\))

\(\epsilon_v\)

1.2

400

0.3

6

1

0.007

1.2

2500

0.3

4

5

0.007

The power of the wind turbine is given by:

(7.1)#\[P = \frac{1}{2} \rho A v^3 C_p\]

Where

  • \(P\) is the power

  • \(\rho\) is the air density

  • \(A\) is the rotor swept area

  • \(v\) is the wind velocity

  • \(C_p\) is a coefficient of efficiency

The energy in the car is given by:

(7.2)#\[E = Pt\]

Where

  • E is the energy

  • P is the power

  • t is the time

The distance that an electric vehicle can travel is given by:

(7.3)#\[d = E\epsilon_v\]

Where

  • d is the distance

  • E is the energy

  • \(\epsilon_v\) is the vehicle efficiency

Note: Convert the distance from m to km before printing to the terminal. This can be done using simple division in Python.

../../../../../_images/flowchart1.png

Fig. 7.1 Flowchart for Team Task 3#

Save your answers to a PDF named py1_team_teamnumber.pdf.

Table 7.7 Deliverables#

Deliverables

Description

py1_team_teamnumber.pdf

PDF with answers to the task