\[ \begin{align}\begin{aligned}\newcommand\blank{~\underline{\hspace{1.2cm}}~}\\% Bold symbols (vectors) \newcommand\bs[1]{\mathbf{#1}}\\% Poor man's siunitx \newcommand\unit[1]{\mathrm{#1}} \newcommand\num[1]{#1} \newcommand\qty[2]{#1~\unit{#2}}\\\newcommand\per{/} \newcommand\squared{{}^2} \newcommand\cubed{{}^3} % % Scale \newcommand\milli{\unit{m}} \newcommand\centi{\unit{c}} \newcommand\kilo{\unit{k}} \newcommand\mega{\unit{M}} % % Percent \newcommand\percent{\unit{\%}} % % Angle \newcommand\radian{\unit{rad}} \newcommand\degree{\unit{{}^\circ}} % % Time \newcommand\second{\unit{s}} \newcommand\s{\second} \newcommand\minute{\unit{min}} \newcommand\hour{\unit{h}} % % Distance \newcommand\meter{\unit{m}} \newcommand\m{\meter} \newcommand\inch{\unit{in}} \newcommand\foot{\unit{ft}} % % Force \newcommand\newton{\unit{N}} \newcommand\kip{\unit{kip}} % kilopound in "freedom" units - edit made by Sri % % Mass \newcommand\gram{\unit{g}} \newcommand\g{\gram} \newcommand\kilogram{\unit{kg}} \newcommand\kg{\kilogram} \newcommand\grain{\unit{grain}} \newcommand\ounce{\unit{oz}} % % Temperature \newcommand\kelvin{\unit{K}} \newcommand\K{\kelvin} \newcommand\celsius{\unit{{}^\circ C}} \newcommand\C{\celsius} \newcommand\fahrenheit{\unit{{}^\circ F}} \newcommand\F{\fahrenheit} % % Area \newcommand\sqft{\unit{sq\,\foot}} % square foot % % Volume \newcommand\liter{\unit{L}} \newcommand\gallon{\unit{gal}} % % Frequency \newcommand\hertz{\unit{Hz}} \newcommand\rpm{\unit{rpm}} % % Voltage \newcommand\volt{\unit{V}} \newcommand\V{\volt} \newcommand\millivolt{\milli\volt} \newcommand\mV{\milli\volt} \newcommand\kilovolt{\kilo\volt} \newcommand\kV{\kilo\volt} % % Current \newcommand\ampere{\unit{A}} \newcommand\A{\ampere} \newcommand\milliampereA{\milli\ampere} \newcommand\mA{\milli\ampere} \newcommand\kiloampereA{\kilo\ampere} \newcommand\kA{\kilo\ampere} % % Resistance \newcommand\ohm{\Omega} \newcommand\milliohm{\milli\ohm} \newcommand\kiloohm{\kilo\ohm} % correct SI spelling \newcommand\kilohm{\kilo\ohm} % "American" spelling used in siunitx \newcommand\megaohm{\mega\ohm} % correct SI spelling \newcommand\megohm{\mega\ohm} % "American" spelling used in siunitx % % Inductance \newcommand\henry{\unit{H}} \newcommand\H{\henry} \newcommand\millihenry{\milli\henry} \newcommand\mH{\milli\henry} % % Power \newcommand\watt{\unit{W}} \newcommand\W{\watt} \newcommand\milliwatt{\milli\watt} \newcommand\mW{\milli\watt} \newcommand\kilowatt{\kilo\watt} \newcommand\kW{\kilo\watt} % % Energy \newcommand\joule{\unit{J}} \newcommand\J{\joule} % % Composite units % % Torque \newcommand\ozin{\unit{\ounce}\,\unit{in}} \newcommand\newtonmeter{\unit{\newton\,\meter}} % % Pressure \newcommand\psf{\unit{psf}} % pounds per square foot \newcommand\pcf{\unit{pcf}} % pounds per cubic foot \newcommand\pascal{\unit{Pa}} \newcommand\Pa{\pascal} \newcommand\ksi{\unit{ksi}} % kilopound per square inch \newcommand\bar{\unit{bar}} \end{aligned}\end{align} \]

Oct 24, 2024 | 352 words | 4 min read

2.3.2. Task 2#

Viscosity Quality Control#

Learning Objectives#

By the end of this task, students will be able to proficiently import and organize data in MS Excel, select and justify appropriate data visualization techniques, and create well-formatted technical plots for professional presentations. They will develop the ability to critically evaluate data for outliers or measurement errors, calculate the percentage of measurements that meet specified product requirements, and interpret the results in the context of quality control. Finally, students will synthesize their analysis into clear conclusions and recommendations, effectively communicating their findings to the engineering team.

Introduction#

A quality control engineer has just been hired at a company that produces engine oil for race cars. The specification for a specific engine oil is \([0.475, 0.525] \pascal * \second\). Some customers have returned the product claiming that the product viscosity is outside the specifications. The quality control engineer has measured the product viscosity at \(50\) evenly spaced time intervals; the results are included in a text file. The engineer must present their results, conclusions, and recommendations to the engineering team at the next meeting.

Task Instructions#

  1. Open the answer sheet ex2_ind_2_username.xlsx. Save it with your Purdue username replacing username in the file name.

  2. In the Input Section of the sheet, import the data from the file ex2_ind_2_viscosity.txt.

  3. Under the Calculation Section,

    1. Compute number of data points within and outside the specifications. Use in-built functions of MS Excel to calculate these values.

    2. Based on the values computed in the previous step, compute the percent values within specifications.

  4. In the Figure Section of the spreadsheet ex2_ind_2_username.xlsx,

    1. Plot the measurements of viscosity in \(50\) evenly spaced time intervals.

    2. Plot the measurements of viscosity in \(50\) evenly spaced time intervals with upper and lower specification interval.

  5. Copy the following questions into the Output Section of the spreadsheet ex2_ind_2_username.xlsx, and then add your answers.

    1. Does the data appear to have outliers or errors in measurement? Why or why not?

    2. What percentage of the measurements meets the specification of being within \([0.475, 0.525] \pascal * \second\)?

    3. Given your answer to the previous question, and your plot, summarize the engineer’s main message to the engineering team about the process.

  6. Save the ex2_ind_2_username.xlsx file as ex2_ind_2_values_username.pdf displaying the values and ex2_ind_2_formulas_username.pdf displaying the formula.

  7. Submit both files to Gradescope.