\[ \begin{align}\begin{aligned}\newcommand\blank{~\underline{\hspace{1.2cm}}~}\\% Bold symbols (vectors) \newcommand\bs[1]{\mathbf{#1}}\\% Poor man's siunitx \newcommand\unit[1]{\mathrm{#1}} \newcommand\num[1]{#1} \newcommand\qty[2]{#1~\unit{#2}}\\\newcommand\per{/} \newcommand\squared{{}^2} \newcommand\cubed{{}^3} % % Scale \newcommand\milli{\unit{m}} \newcommand\centi{\unit{c}} \newcommand\kilo{\unit{k}} \newcommand\mega{\unit{M}} % % Percent \newcommand\percent{\unit{\%}} % % Angle \newcommand\radian{\unit{rad}} \newcommand\degree{\unit{{}^\circ}} % % Time \newcommand\second{\unit{s}} \newcommand\s{\second} \newcommand\minute{\unit{min}} \newcommand\hour{\unit{h}} % % Distance \newcommand\meter{\unit{m}} \newcommand\m{\meter} \newcommand\inch{\unit{in}} \newcommand\foot{\unit{ft}} % % Force \newcommand\newton{\unit{N}} \newcommand\kip{\unit{kip}} % kilopound in "freedom" units - edit made by Sri % % Mass \newcommand\gram{\unit{g}} \newcommand\g{\gram} \newcommand\kilogram{\unit{kg}} \newcommand\kg{\kilogram} \newcommand\grain{\unit{grain}} \newcommand\ounce{\unit{oz}} % % Temperature \newcommand\kelvin{\unit{K}} \newcommand\K{\kelvin} \newcommand\celsius{\unit{{}^\circ C}} \newcommand\C{\celsius} \newcommand\fahrenheit{\unit{{}^\circ F}} \newcommand\F{\fahrenheit} % % Area \newcommand\sqft{\unit{sq\,\foot}} % square foot % % Volume \newcommand\liter{\unit{L}} \newcommand\gallon{\unit{gal}} % % Frequency \newcommand\hertz{\unit{Hz}} \newcommand\rpm{\unit{rpm}} % % Voltage \newcommand\volt{\unit{V}} \newcommand\V{\volt} \newcommand\millivolt{\milli\volt} \newcommand\mV{\milli\volt} \newcommand\kilovolt{\kilo\volt} \newcommand\kV{\kilo\volt} % % Current \newcommand\ampere{\unit{A}} \newcommand\A{\ampere} \newcommand\milliampereA{\milli\ampere} \newcommand\mA{\milli\ampere} \newcommand\kiloampereA{\kilo\ampere} \newcommand\kA{\kilo\ampere} % % Resistance \newcommand\ohm{\Omega} \newcommand\milliohm{\milli\ohm} \newcommand\kiloohm{\kilo\ohm} % correct SI spelling \newcommand\kilohm{\kilo\ohm} % "American" spelling used in siunitx \newcommand\megaohm{\mega\ohm} % correct SI spelling \newcommand\megohm{\mega\ohm} % "American" spelling used in siunitx % % Inductance \newcommand\henry{\unit{H}} \newcommand\H{\henry} \newcommand\millihenry{\milli\henry} \newcommand\mH{\milli\henry} % % Power \newcommand\watt{\unit{W}} \newcommand\W{\watt} \newcommand\milliwatt{\milli\watt} \newcommand\mW{\milli\watt} \newcommand\kilowatt{\kilo\watt} \newcommand\kW{\kilo\watt} % % Energy \newcommand\joule{\unit{J}} \newcommand\J{\joule} % % Composite units % % Torque \newcommand\ozin{\unit{\ounce}\,\unit{in}} \newcommand\newtonmeter{\unit{\newton\,\meter}} % % Pressure \newcommand\psf{\unit{psf}} % pounds per square foot \newcommand\pcf{\unit{pcf}} % pounds per cubic foot \newcommand\pascal{\unit{Pa}} \newcommand\Pa{\pascal} \newcommand\ksi{\unit{ksi}} % kilopound per square inch \newcommand\bar{\unit{bar}} \end{aligned}\end{align} \]

Oct 24, 2024 | 416 words | 4 min read

3.2.3. Task 3#

Learning Objectives#

By the end of this task, you will be able to analyze and interpret bacterial growth data, construct a mathematical model to represent the growth curve, and validate the model using the provided dataset, ultimately demonstrating their ability to predict bacterial growth trends over a given time period.

Introduction#

Your team has a sample of an unidentified bacterial specimen, and you would like to model its growth. You have access to a dataset where the number of bacteria were counted every \(2\) hours over a \(36\)-hour period. You will use the data, found in the spreadsheet ex3_team_3_teamnumber.xlsx, to create a model of the bacterial growth.

Task Instructions#

  1. Open the answer sheet ex3_team_3_teamnumber.xlsx. Save it with your team number replacing teamnumber in the file name.

  2. In the Input Section of the sheet, import the time (in hours) and bacterial count from bacterial_growth.csv

  3. In the Calculation Section, use a formula to fill in the “\(\log_{10}\) Time” and “\(\log_{10}\) Bacterial Count” columns. These columns will be the base \(10\) logarithmic value of the corresponding “Time” and “Bacterial Count” columns.

  4. In the Output Section you will create \(4\) scatter plots with axes that are linear, semi-log x, semi-log y, and log-log. Be sure that each plot has an appropriate title and correctly labeled axes.

    1. Create the linear plot by using the “Time” and “Bacterial Count” columns

    2. Create the semi-log x plot by using the “\(\log_{10}\) Time” and “Bacterial Count” columns

    3. Create the semi-log y plot by using the “Time” and “\(\log_{10}\) Bacterial Count” columns

    4. Create the log-log plot by using the “\(\log_{10}\) Time” and “\(\log_{10}\) Bacterial Count” columns

  5. For each plot, add a trendline that best fits the data. Display the equation and \(R^2\) value for each trendline.

  6. Copy the following questions into the Output Section of the spreadsheet and then add your answers.

    1. What type of trendline did you use to best fit the data in that plot? Justify your answers.

    2. Use the model you chose in the previous question to predict the number of bacteria present after \(19.5\)hours. Is this number consistent with the given dataset? Why or why not?

    3. Use the model you chose in the first question to predict the time when there were \(20\) bacteria present. Is this number consistent with the given dataset? Why or why not?

  7. Print two PDF files of ex3_team_3_teamnumber.xlsx, one with values showing (ex3_team_3_teamnumber_values.pdf) and the other with formulas (ex3_team_3_teamnumber_formulas.pdf).