\[ \begin{align}\begin{aligned}\newcommand\blank{~\underline{\hspace{1.2cm}}~}\\% Bold symbols (vectors)
\newcommand\bs[1]{\mathbf{#1}}\\% Poor man's siunitx
\newcommand\unit[1]{\mathrm{#1}}
\newcommand\num[1]{#1}
\newcommand\qty[2]{#1~\unit{#2}}\\\newcommand\per{/}
\newcommand\squared{{}^2}
\newcommand\cubed{{}^3}
%
% Scale
\newcommand\milli{\unit{m}}
\newcommand\centi{\unit{c}}
\newcommand\kilo{\unit{k}}
\newcommand\mega{\unit{M}}
%
% Percent
\newcommand\percent{\unit{\%}}
%
% Angle
\newcommand\radian{\unit{rad}}
\newcommand\degree{\unit{{}^\circ}}
%
% Time
\newcommand\second{\unit{s}}
\newcommand\s{\second}
\newcommand\minute{\unit{min}}
\newcommand\hour{\unit{h}}
%
% Distance
\newcommand\meter{\unit{m}}
\newcommand\m{\meter}
\newcommand\inch{\unit{in}}
\newcommand\foot{\unit{ft}}
%
% Force
\newcommand\newton{\unit{N}}
\newcommand\kip{\unit{kip}} % kilopound in "freedom" units - edit made by Sri
%
% Mass
\newcommand\gram{\unit{g}}
\newcommand\g{\gram}
\newcommand\kilogram{\unit{kg}}
\newcommand\kg{\kilogram}
\newcommand\grain{\unit{grain}}
\newcommand\ounce{\unit{oz}}
%
% Temperature
\newcommand\kelvin{\unit{K}}
\newcommand\K{\kelvin}
\newcommand\celsius{\unit{{}^\circ C}}
\newcommand\C{\celsius}
\newcommand\fahrenheit{\unit{{}^\circ F}}
\newcommand\F{\fahrenheit}
%
% Area
\newcommand\sqft{\unit{sq\,\foot}} % square foot
%
% Volume
\newcommand\liter{\unit{L}}
\newcommand\gallon{\unit{gal}}
%
% Frequency
\newcommand\hertz{\unit{Hz}}
\newcommand\rpm{\unit{rpm}}
%
% Voltage
\newcommand\volt{\unit{V}}
\newcommand\V{\volt}
\newcommand\millivolt{\milli\volt}
\newcommand\mV{\milli\volt}
\newcommand\kilovolt{\kilo\volt}
\newcommand\kV{\kilo\volt}
%
% Current
\newcommand\ampere{\unit{A}}
\newcommand\A{\ampere}
\newcommand\milliampereA{\milli\ampere}
\newcommand\mA{\milli\ampere}
\newcommand\kiloampereA{\kilo\ampere}
\newcommand\kA{\kilo\ampere}
%
% Resistance
\newcommand\ohm{\Omega}
\newcommand\milliohm{\milli\ohm}
\newcommand\kiloohm{\kilo\ohm} % correct SI spelling
\newcommand\kilohm{\kilo\ohm} % "American" spelling used in siunitx
\newcommand\megaohm{\mega\ohm} % correct SI spelling
\newcommand\megohm{\mega\ohm} % "American" spelling used in siunitx
%
% Inductance
\newcommand\henry{\unit{H}}
\newcommand\H{\henry}
\newcommand\millihenry{\milli\henry}
\newcommand\mH{\milli\henry}
%
% Power
\newcommand\watt{\unit{W}}
\newcommand\W{\watt}
\newcommand\milliwatt{\milli\watt}
\newcommand\mW{\milli\watt}
\newcommand\kilowatt{\kilo\watt}
\newcommand\kW{\kilo\watt}
%
% Energy
\newcommand\joule{\unit{J}}
\newcommand\J{\joule}
%
% Composite units
%
% Torque
\newcommand\ozin{\unit{\ounce}\,\unit{in}}
\newcommand\newtonmeter{\unit{\newton\,\meter}}
%
% Pressure
\newcommand\psf{\unit{psf}} % pounds per square foot
\newcommand\pcf{\unit{pcf}} % pounds per cubic foot
\newcommand\pascal{\unit{Pa}}
\newcommand\Pa{\pascal}
\newcommand\ksi{\unit{ksi}} % kilopound per square inch
\newcommand\bar{\unit{bar}}
\end{aligned}\end{align} \]
Dec 03, 2024 | 305 words | 3 min read
8.2.3. Task 3
Task Instructions
In many biological systems it is difficult to simply measure the concentration of any
one substance by itself. To accomplish such measurements, methods of tagging with
enzymes that produce color when they catalyze a reaction have been developed. Beer’s Law
is used to relate the absorbance of a sample to the concentration of the products
produced by these enzymes. So, almost any protein concentration can be found by simply
taking absorbance readings if it has first been tagged with an enzyme.
Beer’s Law , given in (8.1), simply states that the rate of photon
absorbance, \(A\), is directly proportional to the concentration of the absorbers,
\(c\). The proportionality constant is the product of the path length the light must
travel, \(b\), and the molar extinction coefficient of the substance,
\(\epsilon\).
(8.1)\[A = \epsilon*c*b\]
Write a Python script that will open a file containing the name of the
substance that was tagged, the path length (\(b\)), the molar extinction
coefficient of the absorbers (\(\epsilon\)), and an absorbency (\(A\)), and
then find the concentration for each absorbency value, \(c\). The input file
containing the raw data is here:
Py4_Task3_input.txt
.
Hint
Look up strip()
and split()
functions using the following links:
Within your main program, create a function named absorb_calc
that takes
relevant inputs to calculate the concentration for each value of absorbency. Make
sure your program can calculate concentrations for any number of absorbency values
given. Your program should then output the name of the substance and a list of the
concentrations associated with that substance as follows to the screen. (You do not
need to worry about units for this specific task, and you do not need to output
results to a text file.).
Name your main program:
py4_team_3_teamnumber.py Be sure to
add the flowchart associated with this task in the previously created PDF file.
Sample Output
Sample Output
$ python3 py4_team_3_teamnumber.py
The name of the substance is Glucose Oxidase
For 0.9863 absorbency value, the concentration is 0.0000508
For 0.6868 absorbency value, the concentration is 0.0000354
For 0.4462 absorbency value, the concentration is 0.0000230