\[ \begin{align}\begin{aligned}\newcommand\blank{~\underline{\hspace{1.2cm}}~}\\% Bold symbols (vectors) \newcommand\bs[1]{\mathbf{#1}}\\% Poor man's siunitx \newcommand\unit[1]{\mathrm{#1}} \newcommand\num[1]{#1} \newcommand\qty[2]{#1~\unit{#2}}\\\newcommand\per{/} \newcommand\squared{{}^2} \newcommand\cubed{{}^3} % % Scale \newcommand\milli{\unit{m}} \newcommand\centi{\unit{c}} \newcommand\kilo{\unit{k}} \newcommand\mega{\unit{M}} % % Percent \newcommand\percent{\unit{\%}} % % Angle \newcommand\radian{\unit{rad}} \newcommand\degree{\unit{{}^\circ}} % % Time \newcommand\second{\unit{s}} \newcommand\s{\second} \newcommand\minute{\unit{min}} \newcommand\hour{\unit{h}} % % Distance \newcommand\meter{\unit{m}} \newcommand\m{\meter} \newcommand\inch{\unit{in}} \newcommand\foot{\unit{ft}} % % Force \newcommand\newton{\unit{N}} \newcommand\kip{\unit{kip}} % kilopound in "freedom" units - edit made by Sri % % Mass \newcommand\gram{\unit{g}} \newcommand\g{\gram} \newcommand\kilogram{\unit{kg}} \newcommand\kg{\kilogram} \newcommand\grain{\unit{grain}} \newcommand\ounce{\unit{oz}} % % Temperature \newcommand\kelvin{\unit{K}} \newcommand\K{\kelvin} \newcommand\celsius{\unit{{}^\circ C}} \newcommand\C{\celsius} \newcommand\fahrenheit{\unit{{}^\circ F}} \newcommand\F{\fahrenheit} % % Area \newcommand\sqft{\unit{sq\,\foot}} % square foot % % Volume \newcommand\liter{\unit{L}} \newcommand\gallon{\unit{gal}} % % Frequency \newcommand\hertz{\unit{Hz}} \newcommand\rpm{\unit{rpm}} % % Voltage \newcommand\volt{\unit{V}} \newcommand\V{\volt} \newcommand\millivolt{\milli\volt} \newcommand\mV{\milli\volt} \newcommand\kilovolt{\kilo\volt} \newcommand\kV{\kilo\volt} % % Current \newcommand\ampere{\unit{A}} \newcommand\A{\ampere} \newcommand\milliampereA{\milli\ampere} \newcommand\mA{\milli\ampere} \newcommand\kiloampereA{\kilo\ampere} \newcommand\kA{\kilo\ampere} % % Resistance \newcommand\ohm{\Omega} \newcommand\milliohm{\milli\ohm} \newcommand\kiloohm{\kilo\ohm} % correct SI spelling \newcommand\kilohm{\kilo\ohm} % "American" spelling used in siunitx \newcommand\megaohm{\mega\ohm} % correct SI spelling \newcommand\megohm{\mega\ohm} % "American" spelling used in siunitx % % Inductance \newcommand\henry{\unit{H}} \newcommand\H{\henry} \newcommand\millihenry{\milli\henry} \newcommand\mH{\milli\henry} % % Power \newcommand\watt{\unit{W}} \newcommand\W{\watt} \newcommand\milliwatt{\milli\watt} \newcommand\mW{\milli\watt} \newcommand\kilowatt{\kilo\watt} \newcommand\kW{\kilo\watt} % % Energy \newcommand\joule{\unit{J}} \newcommand\J{\joule} % % Composite units % % Torque \newcommand\ozin{\unit{\ounce}\,\unit{in}} \newcommand\newtonmeter{\unit{\newton\,\meter}} % % Pressure \newcommand\psf{\unit{psf}} % pounds per square foot \newcommand\pcf{\unit{pcf}} % pounds per cubic foot \newcommand\pascal{\unit{Pa}} \newcommand\Pa{\pascal} \newcommand\ksi{\unit{ksi}} % kilopound per square inch \newcommand\bar{\unit{bar}} \end{aligned}\end{align} \]

Oct 24, 2024 | 667 words | 7 min read

3.1.1. Materials#

MS Excel - Descriptive Statistics#

Descriptive statistics is a way to describe data using measures of central tendencies and variation (how spread out the data is). These allow us to make evidence-based decisions.

Basic Descriptors#

Table 3.2 Deliverables#

Function

Description

Formula

Count

The total number of data points in the set

=COUNT()

Minimum

Smallest value in the data set

=MIN()

Maximum

Largest value in the data set

=MAX()

Range

Differenence between the maximum and minimum values

=MAX() - MIN()

Measures of Central Tendency#

Table 3.3 Deliverables#

Function

Description

Formula

Mean

Sum of all the data points divided by the total number of data points

=AVERAGE()

Meadian

Middle number of the data set*

=MEDIAN()

Mode

Most frequently occurring number

=MODE()

If you expect one mode

=MODE.SNGL()

If you expect multiple modes

=MODE.MULT()

Data Spread#

Table 3.4 Deliverables#

Function

Description

Formula

Standard Deviation

The measure of the amount of variation in a data set

=STDEV.S()

square root of the variance

Variance

Average of the squared difference of each data point from the mean

=VAR.S()

standard deviation squared

Equations#

Average

(3.1)#\[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i\]

Standard Deviation of the sample

(3.2)#\[\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}\]

Variance of the sample

(3.3)#\[\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2\]

where,

\(\bar{x}\) is the average (mean) value of the sample.

\(x_i\) represents each individual data point.

\(n\) is the total number of data points.

\(\sigma\) represents the standard deviation of the sample.

\(\sigma^2\) represents the variance of the sample.

MS Excel - Histograms#

Installing the Data Analysis ToolPak#

Follow the steps below to install the Data Analysis ToolPak as an Add-in on your system.

  1. From the File menu select Options (bottom left).

  2. In the Options window, select Add-ins and then click on Go.

    ../../_images/windows_options_menu.png

    Fig. 3.1 The MS Excel options menu.#

  3. In the Add-ins menu, select Analysis ToolPak and then click OK.

    ../../_images/windows_add-ins_menu.png

    Fig. 3.2 The MS Excel Add-ins menu.#

  4. Now you can find the Analysis ToolPak under the Data tab in the Analysis section of the ribbon.

    ../../_images/windows_ribbon.png

    Fig. 3.3 The MS Excel ribbon with Analysis ToolPak installed.#

  1. From the Tools menu select Excel Add-ins.

    ../../_images/mac_options_menu.png

    Fig. 3.4 The MS Excel options menu.#

  2. In the Add-ins window, check the box next to Analysis ToolPak and then click on OK.

    ../../_images/mac_add-ins_menu.png

    Fig. 3.5 The MS Excel Add-ins menu.#

  3. Now you can launch the Analysis ToolPak by navigating to the Data tab and clicking on Data Analysis.

    ../../_images/mac_ribbon.png

    Fig. 3.6 The MS Excel ribbon with Analysis ToolPak installed.#

Creating a histogram using the Data Analysis ToolPak#

Here is the example worksheet used in the above video - HistogramExample_Landfillwaste.xlsx

Note

A work through for both options above is provided here Excel_HistogramExample_FabricIgnition.xlsx.

Basic Flowcharts#

Click on this link to learn how to create a basic flowchart in MS Visio.

Click on this link to watch a video on how to create a basic flowchart in MS Visio.

Skewness#

Skewness is a measure of a dataset’s symmetry (or lack of symmetry). MS Excel function is SKEW()

A perfectly symmetrical data set will have a skewness of 0 and is often known as a normal distribution. A skew less than zero (negative) has a long tail to the left. A skew greater than zero (positive) has a long tail to the right.

../../_images/mean_med_mod.png

Fig. 3.7 Relationship between mean, median, mode with the skewness.#

Kurtosis#

Kurtosis is a measure of the peakedness and flatness of a distribution. MS Excel function is KURT().

Distributions with negative kurtosis exhibit tail data exceeding the tails of normal distribution. Distributions with positive kurtosis exhibit tail data that is generally less extreme than the tails of the normal distribution.

../../_images/kurtosis.jpg

Fig. 3.8 Kurtosis Distribution.#